- 6. $31.8 +$ √ $81.3 = 40.8$
- 7. $log(43.7 \times 192) = 3.92$

$$
8. \quad -\frac{1}{(0.357)^2} = -7.85
$$

9. $A = bh = (23.1)(14.8) = 342$

10.
$$
C = D\pi \implies D = \frac{C}{\pi} = \frac{3970}{\pi} = 1260
$$

$$
16. \quad C = \frac{\$28.08}{24} = \$1.17
$$

17. $6.34 \text{ mi} \times \frac{1.6093 \text{ km}}{1 \text{ mi}} = 10.2 \text{ km}$

$$
18. \quad \left(\frac{84}{84+69}\right)100\% = 54.9
$$

- 19. $x = 0.804 \sin(56.6^\circ) = 0.671$
- **20**. Ignoring the " $\times 10^{7}$ " and decimals for a moment, use the Pyth Thm to get $x = \sqrt{(345)^2 + (376)^2} = 510$ \Rightarrow 5.10×10^{7}
- ²⁶. Points in the form (time, length): (1, ⁸.78) and (2.5, ⁶.56). Find the constant rate of burning (slope): $m = \frac{8.78 - 6.56}{1.25}$ $\frac{1}{1-2.5}$ = -1.48 in/hr. From the length at 1
back one "slope" to get 8.78 – (-1.48) = 10.3 in hour, go back one "slope" to get $8.78 - (-1.48) = 10.3$ in.
- 27. The least cost involves using the largest number of boxes of 9 nuggets as possible, since they are cheaper on a per nugget basis. This is equivalent to finding the least number of boxes of 5. Since she must have exactly 124 nuggets, we must find integers solutions to the equation $9x + 5y = 124$, where *x* is the number of boxes of 9 and *y* is the number of boxes of 5. Solving for *x*, we have $x = \frac{124 - 5y}{9}$ $\frac{y}{9}$. We need to find the value of *x* that is a positive integer when *y* is a nonnegative integer. Starting with $y = 0$, $y = 1$, etc., the first integer result comes from *y* = 5: $x = \frac{124 - 5(5)}{9}$ $\frac{-5(5)}{9} = \frac{99}{9}$ $\frac{9}{9}$ = 11. Thus, the least cost comes from 11 boxes of 9 nuggets and 5 boxes of 5 nuggets: $$5.76(11) + $4.32(5) = 84.96

28.
$$
x = 2020 - 1960 = 60
$$

\n $P(60) = 0.00314(60)^2 + 0.158(60) + 9.53 = 30.34$
\n $PE = 100\% \left(\frac{\text{Est}}{\text{Act}} - 1\right) = 100\% \left(\frac{30.34}{29.1} - 1\right) = 4.26\%$

29.
$$
TSA = 6s^2 = 6(5.51)^2 = 182
$$

30.
$$
V = \pi r^2 h \Rightarrow 30.8 = \pi r^2 (3.09)
$$

\n $\Rightarrow r = \sqrt{\frac{30.8}{\pi (3.09)}} = 1.78$

36. $F = 147 \times 2^{8/12} = 233$

37.
$$
1 \text{ ft}^3 = 7.4805 \text{ gal}
$$

\n $103.97 \text{ gal} \times \frac{1 \text{ ft}^3}{7.4805 \text{ gal}} = 13.8988 \text{ ft}^3$ (5SD)
\n $13.8988 \text{ ft}^3 \times \left(\frac{12 \text{ in}}{1 \text{ ft}}\right)^3 = 24017.13 \text{ in}^3$ (5SD)
\n $V = A\ell$ = (cross sectional area)(length) \Rightarrow
\n24017.13 in³ = A(81.25 in) \Rightarrow A = 295.5955
\n(4SD) Water forms a segment of the semicircle:

$$
A_{\text{seg}} = \frac{1}{2}r^2(\theta - \sin \theta)
$$

38. $\omega = \frac{8 \text{ rev}}{\text{min}}$ $\frac{3 \text{ rev}}{\text{min}} \times \frac{2\pi \text{ rad}}{1 \text{ rev}} \times \frac{1 \text{ min}}{60 \text{ s}}$ $\frac{100 \text{ m}}{60 \text{ s}}$ = 0.83776 rad/s $\theta = \omega t = (0.83776 \text{ rad/s})(11.7 \text{ s}) = 9.8018 \text{ rad}$ Coordinatize with merry-go-round center at the origin. Johnny gets on at $\theta = 0$ rad, which we set to (5,0) and bench to (12, 0). Johnny's position on merry-go-round is $(5 \cos \theta, 5 \sin \theta)$ after riding the merry-go-round through an angle of θ . Using $\theta = 9.8018$ rad, Johnny's position is $(5 \cos 9.8018, 5 \sin 9.8018) = (-4.649, -1.8406)$ The distance between Johnny and the bench is $x =$ $\sqrt{(12 - (-4.649))^2 + (0 - (-1.8406))^2} = 16.8$ ft

39.
$$
s = \frac{a+b+c}{2} = \frac{19+23+27}{2} = 34.5
$$

\n $K = \sqrt{s(s-a)(s-b)(s-c)}$
\n $= \sqrt{34.5(34.5-19)(34.5-23)(34.5-27)} = 214.76$
\n $R = \frac{abc}{4K} = \frac{(19)(23)(27)}{4K} = 13.7$

- 40. Let *x* be the interior segment and β be the exterior angle $0.75 + 0.54$ and α be the third angle of the triangle on the right. Use the Law of Sines: $\frac{x}{\sin(0.75)}$ = 640 640 $\frac{\sin(0.75 + 0.54)}{\sin(0.75 + 0.54)}$ \Rightarrow *x* = 454.03 [Note the 0.75 + 0.54] is the exterior angle, but $\sin \theta = \sin(\pi - \theta)$, so we can easily use this angle without actually computing α .] Next, use Law of Cosines to find the desired side: $y^2 = 500^2 + x^2 - 2(500)(x)\cos\beta \Rightarrow y = 575$
- **46.** $\left(\frac{8 \text{ m}}{7.2 \text{ m}}\right)^2$ $=\frac{2.7 \text{ large bottles}}{x \text{ large bottles}}$ \Rightarrow *x* = 2.187 large bottles \times $\frac{1 \text{ small bottle}}{0.6 \text{ large bottle}}$ $\frac{1}{0.6 \text{ large bottles}} =$ ³.65 small bottles

47.
$$
y = -2.0333x + 105.1
$$

\n $x = 20 \Rightarrow y = -2.0333(20) + 105.1 = 64.4$

48. Use solver: $x = 1.83$

49. Three hemispheres cover the top. Diameter =
$$
\frac{12.6}{3}
$$
 = 4.2 \Rightarrow Radius = 2.1 $V = V_{\text{rect}} - 3V_{\text{hs}} = \ell lwh - 3\left(\frac{2}{3}\pi r^3\right)$ = $(12.6)(4.2)(5) - 2\pi(2.1)^3 = 206$

50. $\ell = \text{slant height and } LSA = 4(\frac{1}{2}b\ell) = 2b\ell$ \Rightarrow 46.2 = 2(2.90) $\ell \Rightarrow \ell = 7.9655$ $h =$ altitude \Rightarrow $\ell^2 = h^2 + \left(\frac{b}{2}\right)$ 2 χ^2 \Rightarrow $(7.9655)^2 = h^2 + \left(\frac{2.90}{2}\right)$ χ^2 $\Rightarrow h = 7.8324$ Diagonal *D* = *b* √ $2 = 4.101$ $heta = \tan^{-1}\left(\frac{h}{D}\right)$ $= 75.3^{\circ}$

56.
$$
f'(x) = \frac{2(x) - 1(x - 3)}{x^2} = \frac{x + 3}{x^2}
$$

 $f'(1) = \frac{1 + 3}{1^2} = 4.00$

D/2

57.
$$
R(t) = \int R'(t) dt = \int \frac{5}{\sqrt{t}} dt = \int 5t^{-1/2} dt = \frac{5t^{1/2}}{1/2} + C =
$$

\n $10\sqrt{t} + C$
\n $R(0) = 7.2 \implies 10\sqrt{0} + C = 7.2 \implies C = 7.2$
\n $R(t) = 10\sqrt{t} + 7.2$
\n $R(2) = 10\sqrt{2} + 7.2 = 21.3$ million dollars
\n[Note $t = 2$ since $t = 0$ is first month, $t = 1$ is second month, and $t = 2$ is third month.]

- 58. det(*PQ*) = det *P* × det *Q* = [(4.7)(5.6) (-0.3)(-1.2)] × $[(8)(-5) - (4)(3)] = (25.96)(-52) = -1350$
- 59. $y = 2 + x x^2 = 0 \implies (2 x)(1 + x) = 0 \implies x = -1, 2$ [Discard $x = -1$] Use Discs: $V = \pi$ \int^{2} 0 $[f(x)]^2$ dx = π \int^{2} 0 (2 + *x* − $(x^2)^2$ *dx* = π \int^{2} $\mathbf{0}$ $4 + 4x - 3x^2 - 2x^3 + x^4 dx =$ $\left[4x + 2x^2 - x^3 - \frac{1}{2}\right]$ $\frac{1}{2}x^4 + \frac{1}{5}$ $\frac{1}{5}x^5\Big|_0^2$ $= 20.1$

60. Notice that since the "top" of the trapezoid on the right is the same as the "leg" of the trapezoid on the left, each trapezoid has 3 congruent short sides and a long side. Name the short side *x* and the desired side *y*.

From the isosceles triangle on top, solve for *x* using the Law of Cosines (isos. triangle version): $c^2 = 2a^2(1-\cos\theta)$

 $8.80^2 = 2x^2(1 - \cos 130^\circ) \Rightarrow x = 4.8549$

Compute the obtuse angles of the trapezoids: $360^\circ - 130^\circ$ $\frac{130}{2}$ = 115°

Drop the altitude from the 130◦ vertex to the base to form a right triangle. Using *x* as the hypotenuse, the base angle of the trapezoid is $180^\circ - 115^\circ = 65^\circ$. The small side of the right triangle is $z = x \cos(65^\circ) = 2.0518$. The long side $y = 2x + 2z = 13.8$

61.
$$
v_0 = 12 \text{ mph} \times \frac{22 \text{ ft/s}}{15 \text{ mph}} = 17.6 \text{ ft/s}
$$

\n $v_f = 28 \text{ mph} \times \frac{22 \text{ ft/s}}{15 \text{ mph}} = 41.067 \text{ ft/s}$
\n $t = 16 \text{ s}$
\n $\Delta x = \left(\frac{17.6 \text{ ft/s} + 41.067 \text{ ft/s}}{2}\right) (16 \text{ s}) = 469 \text{ ft}$
\n62. $p = \frac{1}{88}$
\n $x = p^{250} = \left(\frac{1}{88}\right)^{250} = 88^{-250}$

log *x* = log 88^{-250} = −250 log 88 = −250(1.94448) = [−]486.¹²⁰⁶⁶⁸ ⁼ [−]⁴⁸⁷ ⁺ ⁰.⁸⁷⁹³³¹⁹⁶²⁵ [⇒] *^x* ⁼ $10^{-487+0.8793319625} = 10^{0.8793319625} \times 10^{-487} = 7.57 \times 10^{-487}$

- **63.** $\theta = 52.5$ \degree and $v = 220$ ft/s Horz Range $R = \frac{v^2 \sin(2\theta)}{g} = \frac{(220 \text{ ft/s})^2 \sin(2 \times 52.5^\circ)}{32.17 \text{ ft/s}^2}$ $\frac{32.17 \text{ ft/s}^2}{32.17 \text{ ft/s}^2} =$ ¹⁴⁵³.24 ft Short by 1720 [−] ¹⁴⁵³.²⁴ ⁼ 267 ft
- 64. Label circle center *O* and lower left vertex of rectangle *D*. Drop radius down to intersect line *AB*, label this point *^C*. *AC* ⁼ ¹⁸.6 since tangents from a point to a circle are congruent.

The vertical angles at *B* are congruent. The right triangles *ABD* and *CBO* are similar. Since *CO* = *R* (radius) and $AD = \frac{R}{2}$ $\frac{1}{2}$, the ratio of the sides between the similar triangles is $1 : 2$. Thus, $BC : AB = 2 : 1$ and $AB = \frac{1}{3}(AC) = 6.2$

65. Let *s* be the side of the square and let *z* be the portion of the altitude of the equilateral triangle that sticks out of the square. Thus, $z = 822 - s$.

Total Area = Square Area + Little Equilateral Triangle Area = $s^2 + \frac{z^2}{f}$ 3 $= s^2 + \frac{(822 - s)^2}{\sqrt{s}}$ 3 $= 360000 \Rightarrow s =$ ⁵⁶⁸.¹⁵ √

Altitude of Large Equilateral Triangle = 3 $\frac{6}{2}$ s = 492 ⇒ *a* = 822 − 492 = 330